Numerical Methods-Lecture III: Bellman Equations: Theory

Trevor Gallen

Fall, 2015

Preliminaries

- I assume you have seen Bellman equations before
- Seeing Bellman equations before is unnecessary
- I will introduce as if you have forgotten everything
- I leave the technical requirements to chapters 4 and 9 of Stokey \& Lucas with Prescott, (RMED).
- Most of the problems we write down will be well-conditioned
- This class : DP math :: rocket engineering : physics
- No need to know theory, but can blow up in your face
- With that shallow warning, we'll be learning Monkey Bellmans

Sequence Problem

- We can formulate a number of very interesting problems as:

$$
\begin{aligned}
& \qquad \max _{\left\{x_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} F\left(x_{t}, x_{t+1}\right) \\
& \text { s.t. } x_{t+1} \in \Gamma\left(x_{t}\right), \quad t=0,1,2, \ldots \\
& x_{0} \in X \text { is given. }
\end{aligned}
$$

Sequence Problem

- We can formulate a number of very interesting problems as:

$$
\begin{gathered}
\max _{\left\{x_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} F\left(x_{t}, x_{t+1}\right) \\
\text { s.t. } x_{t+1} \in \Gamma\left(x_{t}\right), \quad t=0,1,2, \ldots \\
\quad x_{0} \in X \text { is given. }
\end{gathered}
$$

- Too abstract for an engineer. What is this saying? Translate it.

Sequence Problem: Pieces

- $F(\cdot, \cdot)$ is something we're trying to maximize
- x_{t+1} is the thing we can control
- F is influenced by:
- Something we control right now: x_{t+1}
- Something that we don't control right now: x_{t}
- But yesterday, we controlled it (except in first period)
- Our ability to control x_{t+1} is governed by $x_{t}($ via $\Gamma)$

Generality? Example 1: NCG

We get utility from consumption. Consumption is constrained by capital.
$\max \mathrm{NPV}$ of $U\left(c_{t}\right)$ s.t. $(1-\delta) k_{t}+A k_{t}^{\alpha}=c_{t}+i_{t}, \quad k_{t+1}=(1-\delta) k_{t}+i_{t}$

- $U\left(c_{t}\right)$ is something we're trying to maximize
- k_{t+1} is the thing we can control
- F is influenced by:
- Something we control right now: k_{t+1} (via LOM, c_{t})
- Something that we don't control right now: k_{t}
- Our ability to control k_{t+1} is governed by k_{t}, which gives our budget constraint

Generality? Example 2: McCall's Model-I

- Search for job
- Each period, one offer w from bounded wage distribution with CDF $F(w)$
- Can reject, get c
- Can accept, get w forever
- Utility is equal to whatever income you get (c or w).

Generality? Example 2: McCall's Model

$$
\begin{gathered}
\max \mathrm{NPV} \text { of } U\left(c_{t}\right)
\end{gathered} \text { s.t. } \quad c_{t}=\left\{\begin{array}{ll}
w & \text { if accept } w \\
c & \text { if not accepted }
\end{array}\right\} \begin{array}{cl}
w_{t+1}=w & \text { if accept } w \\
w_{t+1} \sim F(w) & \text { if not accepted }
\end{array}
$$

- $U\left(c_{t}\right)$ is something we're trying to maximize
- We control if w or c
- F is influenced by:
- Our choice of c vs. w if not yet chosen (memoryless)
- Our past choice of w if accepted (no choice)
- Next w is influenced by past w (sometimes)

Generality? Example 3: Firm Investment

Firm wants to maximize profit given A and K, with profits:

$$
\begin{gathered}
a_{i} \in\{0,1, \ldots, 100\} \\
\operatorname{Pr}\left(A_{t+1}=a_{i} \mid A_{t}\right) \text { given } \\
\pi_{t}= \begin{cases}-\left(A_{t}-K_{t}\right)^{2} & \text { if no change } \\
-\left(A_{t}-K_{t}^{*}\right)^{2}-C & \text { if change }\end{cases} \\
\begin{cases}K_{t+1}=K_{t} & \text { if no change } \\
K_{t+1}=K_{t}^{*} & \text { if change }\end{cases}
\end{gathered}
$$

Where if change, K_{t}^{*} is chosen from the range of a_{i}.

The Bellman Equation - I

- Starting with a sequence problem:

$$
\max _{\left\{x_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} F\left(x_{t}, x_{t+1}\right)
$$

$$
\text { s.t. } x_{t+1} \in \Gamma\left(x_{t}\right), \quad t=0,1,2, \ldots
$$

$$
x_{0} \in X \text { is given. }
$$

- We can define an equation:

$$
V(x)=\max _{y \in \Gamma(x)}\{F(x, y)+\beta V(y)\}
$$

- Call x the state, y the control, V the value function

The Bellman Equation - II

$$
V(x)=\max _{y \in \Gamma(x)}\{F(x, y)+\beta V(y)\}
$$

-What are doing?

- Want to maximize current and future F's through choice of all future x 's
- Simplify the problem: today, and the problem you wake up with tomorrow
- Tomorrow, you maximize today, and the next day's problem
- Define everything recursively: the NPV of happiness if you wake up with x and maximize is utility today plus the NPV of happiness when you wake up with whatever you have left tomorrow
- Call x our state, the thing we wake up with
- Call y our control, the thing we control
- Call「 our law of motion

The Bellman Equation - III

$$
V\left(x_{t}\right)=\max _{\left\{y_{s}\right\}_{s=t}^{\infty}} \sum_{s=t}^{\infty} \beta^{s-t} F\left(x_{s}, y_{s}\right)
$$

Break the first part out:

$$
V\left(x_{t}\right)=\max _{\left\{y_{s}\right\}_{s=t}^{\infty}}\left[\beta^{t-t} F\left(x_{t}, y_{t}\right)+\sum_{s=t+1}^{\infty} \beta^{s-t} F\left(x_{s}, y_{s}\right)\right]
$$

Break up the optimization and take out a β :

$$
V\left(x_{t}\right)=\max _{y_{t}}\left[F\left(x_{t}, y_{t}\right)+\beta \max _{\left\{y_{s}\right\}_{s=t+1}^{\infty}} \sum_{s=t+1}^{\infty} \beta^{s-t-1} F\left(x_{s}, y_{s}\right)\right]
$$

The Bellman Equation - VI

$$
V\left(x_{t}\right)=\max _{y_{t}}\left[F\left(x_{t}, y_{t}\right)+\beta \max _{\left\{y_{s}\right\}_{s=t+1}^{\infty}} \sum_{s=t+1}^{\infty} \beta^{s-t-1} F\left(x_{s}, y_{s}\right)\right]
$$

Notice that if we replaced t with $t+1$ in the definition, we would have:

$$
V\left(x_{t+1}\right)=\max _{\left\{y_{s}\right\}_{s=t+1}^{\infty}} \sum_{s=t+1}^{\infty} \beta^{s-t-1} F\left(x_{s}, y_{s}\right)
$$

Plugging this in:

$$
V\left(x_{t}\right)=\max _{y_{t}}\left[F\left(x_{t}, y_{t}\right)+\beta V\left(x_{t+1}\right)\right]
$$

Given an x_{t}, just need a y_{t}, and whatever the value of all the future decisions we make will be.

Summing Up

- Bellmans are a flexible way of describing a large number of dynamic problems
- We can write down problems easily
- Now we want to numerically solve them
- Next up: value function iteration (extremely easy and intuitive ways to solve)

