NUMERICAL METHODS-LECTURE III: BELLMAN EQUATIONS: THEORY

Trevor Gallen

Fall, 2015

Preliminaries

- I assume you have seen Bellman equations before
- Seeing Bellman equations before is unnecessary
- I will introduce as if you have forgotten everything
- I leave the technical requirements to chapters 4 and 9 of Stokey & Lucas with Prescott, (RMED).
- Most of the problems we write down will be well-conditioned
- This class : DP math :: rocket engineering : physics
 - ▶ No need to know theory, but can blow up in your face
- With that shallow warning, we'll be learning Monkey Bellmans

SEQUENCE PROBLEM

We can formulate a number of very interesting problems as:

$$\max_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} F(x_{t}, x_{t+1})$$

s.t. $x_{t+1} \in \Gamma(x_t), \quad t = 0, 1, 2, ...$

 $x_0 \in X$ is given.

SEQUENCE PROBLEM

We can formulate a number of very interesting problems as:

$$\max_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} F(x_{t}, x_{t+1})$$

s.t.
$$x_{t+1} \in \Gamma(x_t), \quad t = 0, 1, 2, ...$$

$$x_0 \in X$$
 is given.

 Too abstract for an engineer. What is this saying? Translate it.

SEQUENCE PROBLEM: PIECES

- $F(\cdot, \cdot)$ is something we're trying to maximize
- x_{t+1} is the thing we can control
- ► *F* is influenced by:
 - Something we control right now: x_{t+1}
 - Something that we don't control right now: x_t
 - But yesterday, we controlled it (except in first period)
- Our ability to control x_{t+1} is governed by x_t (via Γ)

GENERALITY? EXAMPLE 1: NCG

We get utility from consumption. Consumption is constrained by capital.

max NPV of $U(c_t)$ s.t. $(1-\delta)k_t + Ak_t^{\alpha} = c_t + i_t$, $k_{t+1} = (1-\delta)k_t + i_t$

- $U(c_t)$ is something we're trying to maximize
- k_{t+1} is the thing we can control
- ► *F* is influenced by:
 - Something we control right now: k_{t+1} (via LOM, c_t)
 - Something that we don't control right now: k_t
- Our ability to control k_{t+1} is governed by k_t, which gives our budget constraint

GENERALITY? EXAMPLE 2: MCCALL'S MODEL-I

Search for job

- Each period, one offer w from bounded wage distribution with CDF F(w)
- ► Can reject, get *c*
- ► Can accept, get *w* forever
- Utility is equal to whatever income you get (c or w).

GENERALITY? EXAMPLE 2: MCCALL'S MODEL

max NPV of
$$U(c_t)$$
 s.t. $c_t = \begin{cases} w & \text{if accept } w \\ c & \text{if not accepted} \end{cases}$

$w_{t+1} = w$	if accept w
$w_{t+1} \sim F(w)$	if not accepted

- $U(c_t)$ is something we're trying to maximize
- ▶ We control if *w* or *c*
- F is influenced by:
 - Our choice of c vs. w if not yet chosen (memoryless)
 - Our past choice of w if accepted (no choice)
- Next w is influenced by past w (sometimes)

GENERALITY? EXAMPLE 3: FIRM INVESTMENT

Firm wants to maximize profit given A and K, with profits:

 $a_i \in \{0, 1, ..., 100\}$ $Pr(A_{t+1} = a_i | A_t) \text{ given}$ $\pi_t = \begin{cases} -(A_t - K_t)^2 & \text{if no change} \\ -(A_t - K_t^*)^2 - C & \text{if change} \end{cases}$ $\begin{cases} K_{t+1} = K_t & \text{if no change} \\ K_{t+1} = K_t^* & \text{if change} \end{cases}$

Where if change, K_t^* is chosen from the range of a_i .

THE BELLMAN EQUATION - I

Starting with a sequence problem:

$$\max_{\{\mathsf{x}_{t+1}\}_{t=0}^{\infty}}\sum_{t=0}^{\infty}\beta^{t}F(\mathsf{x}_{t},\mathsf{x}_{t+1})$$

s.t. $x_{t+1} \in \Gamma(x_t), \quad t = 0, 1, 2, ...$

$$x_0 \in X$$
 is given.

We can define an equation:

$$V(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta V(y)\}$$

Call x the state, y the control, V the value function

THE BELLMAN EQUATION - II

$$V(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta V(y)\}$$

- What are doing?
 - Want to maximize current and future F's through choice of all future x's
 - Simplify the problem: today, and the problem you wake up with tomorrow
 - Tomorrow, you maximize today, and the next day's problem
 - Define everything recursively: the NPV of happiness if you wake up with x and maximize is utility today plus the NPV of happiness when you wake up with whatever you have left tomorrow
- Call x our state, the thing we wake up with
- Call y our control, the thing we control
- Call Γ our law of motion

THE BELLMAN EQUATION - III

$$V(x_t) = \max_{\{y_s\}_{s=t}^{\infty}} \sum_{s=t}^{\infty} \beta^{s-t} F(x_s, y_s)$$

Break the first part out:

$$V(x_t) = \max_{\{y_s\}_{s=t}^{\infty}} \left[\beta^{t-t} F(x_t, y_t) + \sum_{s=t+1}^{\infty} \beta^{s-t} F(x_s, y_s) \right]$$

Break up the optimization and take out a β :

$$V(x_t) = \max_{y_t} \left[F(x_t, y_t) + \beta \max_{\{y_s\}_{s=t+1}^{\infty}} \sum_{s=t+1}^{\infty} \beta^{s-t-1} F(x_s, y_s) \right]$$

THE BELLMAN EQUATION - VI

$$V(x_{t}) = \max_{y_{t}} \left[F(x_{t}, y_{t}) + \beta \max_{\{y_{s}\}_{s=t+1}^{\infty}} \sum_{s=t+1}^{\infty} \beta^{s-t-1} F(x_{s}, y_{s}) \right]$$

Notice that if we replaced t with t + 1 in the definition, we would have:

$$V(x_{t+1}) = \max_{\{y_s\}_{s=t+1}^{\infty}} \sum_{s=t+1}^{\infty} \beta^{s-t-1} F(x_s, y_s)$$

Plugging this in:

$$V(x_t) = \max_{y_t} \left[F(x_t, y_t) + \beta V(x_{t+1}) \right]$$

Given an x_t , just need a y_t , and whatever the value of all the future decisions we make will be.

Summing Up

- Bellmans are a flexible way of describing a large number of dynamic problems
- We can write down problems easily
- Now we want to numerically solve them
- Next up: value function iteration (extremely easy and intuitive ways to solve)